Enhancement of the spermidine uptake system and lethal effects of spermidine overaccumulation in ornithine decarboxylase-overproducing L1210 cells under hyposmotic stress.
نویسندگان
چکیده
The D-R cell subline, an ornithine decarboxylase-overproducing variant of L1210 mouse leukemia cells, shows a growth advantage at low osmolality due to its high putrescine content. We tested the ability of spermidine to fulfill the role of putrescine under hyposmotic conditions. Although spermidine (1-30 microM) had no effect on growth under normosmotic conditions (325 mosm/kg), it was strongly inhibitory to D-R cell proliferation at 150 mosm/kg in a concentration-dependent manner. Hypotonic shock greatly increased the rate of spermidine uptake in D-R cells. The increased spermidine content enhanced total putrescine synthesis through a large induction of cytosolic spermidine/spermine N1-acetyltransferase activity but also promoted the excretion of most of the putrescine synthesized by the cells. Delaying the addition of spermidine until 24 h after hypotonic shock resulted in a much sharper decrease in D-R cell viability and strongly depressed polyamine contents. These lethal effects occurred between 8 and 24 h after spermidine addition and followed a dramatic increase in the rate and extent of spermidine accumulation which overrode the metabolic capacity of the N1-acetyltransferase/polyamine oxidase (PAO) pathway. Inhibition of PAO partly reversed the effect of spermidine on growth when the polyamine was added at the time of hypotonic shock, but not 24 h later. Similar experiments performed with alpha-methylspermidine, a metabolically resistant analog, which can completely fulfill cellular requirements for spermidine in normosmotic media, suggested that the lethal effect of a delayed spermidine addition is caused predominantly by excessive accumulation with a minor contribution resulting from stress due to polyamine oxidase activity. In contrast, in hypotonically shocked L1210 cells, spermidine stimulated cell proliferation (albeit less effectively than putrescine), there was no lethal effect of a delayed addition of alpha-methylspermidine, and there was no time-dependent increase in the rate of alpha-methylspermidine uptake. Thus, the spermidine transport system is strongly enhanced by hyposmotic shock in D-R cells, which can result in extensive cell death from overaccumulation of the polyamine and, to a lesser extent, from stress related to the PAO-catalyzed degradation of N1-acetylspermidine. The absence of these effects in parental L1210 cells indicates that the acquisition of an ornithine decarboxylase-overproducing phenotype also involves major modifications in the expression and/or regulation of polyamine transport.
منابع مشابه
An early enlargement of the putrescine pool is required for growth in L1210 mouse leukemia cells under hypoosmotic stress.
Hypoosmotic stress is a potent inducer of ornithine decarboxylase (ODC) activity in a variety of mammalian cells, but the physiological relevance of this response has not been determined. To test whether an increased putrescine content confers a growth advantage at lower osmolarities, we compared the ability of L1210 mouse leukemia cells and of ODC-overproducing variants obtained from this cell...
متن کاملEnhancement of 1,3-bis(2-chloroethyl)-1-nitrosourea-induced cytotoxicity and DNA damage by alpha-difluoromethylornithine in L1210 leukemia cells.
Polyamine depletion by pretreatment with alpha-difluoromethylornithine (DFMO), a specific and irreversible inhibitor of ornithine decarboxylase, potentiates the cytotoxicity of 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) in L1210 leukemia cells grown in a modified soft agar system. The dose enhancement ratio was 1.97 at a control colony formation level of 5%. The basis for this enhancement was ...
متن کاملRelative abilities of bis(ethyl) derivatives of putrescine, spermidine, and spermine to regulate polyamine biosynthesis and inhibit L1210 leukemia cell growth.
It has been shown previously (Porter et al., Cancer Res., 45: 2050-2057, 1985) that the N1,N8-bis(ethyl) derivative of spermidine has significant antiproliferative activity which appears to derive from its regulatory effects on the polyamine biosynthetic pathway, particularly on ornithine decarboxylase activity. In the present study, N1,N4-bis(ethyl)putrescine (BEP) and N1,N12-bis(ethyl)spermin...
متن کاملAntiproliferative effect of spermine depletion by N-cyclohexyl-1,3-diaminopropane in human breast cancer cells.
Spermine is often the most abundant polyamine in human tumors such as breast carcinomas. However, its specific role in tumor biology is still uncertain, since inhibitors of ornithine decarboxylase such as alpha-difluoromethylornithine depress cell growth while leaving spermine content mostly unaffected. We have assessed the specific role of spermine in breast cancer cell growth using N-cyclohex...
متن کاملUtilization of putrescine in tobacco cell lines resistant to inhibitors of polyamine synthesis.
Three tobacco cell lines have been analyzed which are resistant to lethal inhibitors of either putrescine production or conversion of putrescine into polyamines. Free and conjugated putrescine pools, the enzymic activities (arginine, ornithine, and S-adenosylmethionine decarboxylases), and the growth characteristics during acidic stress were measured in suspension cultures of each cell line. On...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 268 7 شماره
صفحات -
تاریخ انتشار 1993